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ABSTRACT 

The paper deals with less known methods of image processing, i.e. methods that employ 
partial differential equations. The methods described in the overview article are methods 
for image restoration (energy method, total variation restoration, heat equation, nonlinear 
diffusion, and Osher-Rudin shock filter for the enhancement of edges in an image) and me-
thods for image segmentation (application of the level set method as a segmentation ap-
proach to complex shapes). The principles of several methods, their mathematical models, 
and examples of image processing are given.  

1. INTRODUCTION 

Improving the quality of images has recently come to be one of very important technical 
problems, which concerns not only technical fields but also many fields of science and, in 
particular, the field of medical diagnostic methods. The obtained image is degraded by de-
terministic and random phenomena. The former may be due to, for example, a wrong ad-
justment of the optic mechanism or some motion. Random phenomena are taken to mean 
noise in the image or errors in signal transmission. Random noise is characterized by prob-
ability distribution. 

Many methods have been proposed for image processing; the less known but efficient me-
thods include methods that employ partial differential equations (PDE). These methods can 
be used for restoration, segmentation, and exacting applications such as inpainting (paint-
ing in the damaged part of image), decomposition of image into geometric shapes and tex-
tures, sequence analysis, and image classification. This overview article is concerned with 
the application of methods of restoration and segmentation. 

For image restoration, the energy method and the total-variance minimization are de-
scribed. The latter does not smooth edges as the energy methods does during noise filter-
ing. Other methods consist in a direct application of PDE as equations of heat conduction 
and non-linear diffusion. These methods serve to filter noise, in other words they filter the 
higher frequency components. Yet another type of image restoration method is PDEs for 
the enhancement of edges in the image, that is to say high-pass filters. The Osher-Rudin 
shock filter is give. 



For image segmentation, the level set method is described. Here, the principle is the evolu-
tion of contours in the image, which draw close to object edges with time. The contour is 
the result of a 3D function intersecting with the zero level. An advantage of the level set 
method in comparison with active contours is the change in the curve shape based on the 
level set function. The method can thus be applied to very complex shapes in the image. 

2. MATHEMATICAL MODELS 

2.1. IMAGE RESTORATION 

Image restoration essentially consists in removing noise or reducing the above described 
phenomena. Let us take a general model: 

 η+= uRu0 , (1) 

for an image obtained, where η is Gaussian white additive noise, and R is a linear operator 
representing a blur (most frequently a convolution). The aim of the methods is to recon-
struct the original image describing a real scene. This an inversion problem and we can on-
ly obtain an approximation of original image u , which we examine over region Ω. 

 

The Energy Method 

The classical solution to this inversion problem consists in adding a regularization member 
to the energy difference between the original and the restored image. We solve generally 
the following minimization problem: 
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The first member is a measure of agreement between the obtained and the original image, 
and the second element is the smoothing element. We are seeking an image whose total 
gradient is small – with the noise removed. The parameter λ is a positive constant. The 
function Φ must be chosen such that the resultant image is formed by regions with a con-
stant brightness value separated by sharp edges. Energy minimization (2) corresponds to 
the Euler-Lagrange equation: 
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where R* is a matrix adjunct to R. For simplification, we choose R = I. 

 

Total variation restoration 

An approach similar to that of the energy methods is the minimization of total variation. 
There is no member with energy here, only the smoothing element, which exactly is 
formed by total variation defined as: 
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Fig. 1: Processing by energy method, a) original image, b) L2 gradient normal as the 
smoothing member, c) L1 gradient normal as the smoothing member 

 

By minimizing (4) we will obtain a partial differential equation in the form: 
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This method is already capable of preserving edges in the image better than the energy me-
thod with a simple smoothing member (L2 gradient normal). 

 

The Heat Equation, Nonlinear Diffusion 

The method of heat conduction equation and non-linear diffusion applies differential equa-
tions to an image signal. The heat conduction equation can be written in the form: 
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And the equation of non-linear diffusion in the form: 
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Equation (7) corresponds to signal processing by a Gaussian filter with core: 
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with a relation holding between the number of iterations and the standard filter deviation σ 
= √2t. The main disadvantage of this method is that it smoothes the image inclusive of 
sharp edges. This drawback is solved by the equation of non-linear diffusion if the function 
c has been selected correctly (for c ≡ 1 the diffusion equation changes to the heat conduc-
tion equation). In order that filtering should not smooth edges, the function must acquire 
values close to zero for high gradient values (edge) and values close to one for low gra-
dient values (noise), which will ensure that smoothing near the edges will stop.  For exam-
ple: 
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The Osher-Rudin Shock Filter 

The Osher-Rudin filter belongs to the category of high-pass filters. It thus serves to en-
hance edges in the image, to focus. The equation of the filter is of the following form: 
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Where F is a function that fulfils the conditions: 

 ( ) ( ) ( ) ,0,0,00 ≠>= ssFssignF  (11) 

and L is the edge detector (zero-cross). An example can be seen in the Laplacian (sum of 
second derivatives with respect to co-ordinates). The result of filtering by this filter is 
shown in Fig. 2 (taken over from [1]). The filter creates from blurred regions homogeneous 
regions with sharp transitions. 

 

Fig. 2: Enhancement of edges in an image, using the Osher-Rudin shock filter; left – origi-
nal image, right – focused image 

2.2. IMAGE SEGMENTATION 

Compared with classical methods such as segmentation via thresholding or via following 
the object boundaries, the level set method is a completely different approach. By its prin-
ciple, it resembles the method of active contours, but here we change the shape of curves 
by means of the level set function. The method is therefore appropriate for more complex 
shapes of objects in the image. 

 

Level-Set Method 

The principle of this method consists in shaping a function that is one dimension larger 
than the segmented image. The contour is thus the result of such a function intersecting the 
plane at zero level. Fig. 3 (taken over from [2]) shows its application in processing a mag-
netic resonance image, specifically the segmentation of white cerebral cortex. The equation 
of the evolution of level-set function is defined as follows: 
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where F is the so/called velocity function, which is made up of three members: 

 extcurv0 FFFF ++= , (13) 



The first member, F0, gives the constant velocity of zero contour in the direction of the 
normal, Fcurv is a velocity dependent on local curvature, and Fext is the velocity in the outer 
vector field V. Substituting equation (13) into (12) will yield an extended equation for the 
evolution of level set function: 
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Finally, it is necessary to choose suitably the function F0 and the vector field V. We choose 
the function F0 as an edge detector while the field vector is chosen such that the contour at 
the place of edge stops and does not continue expanding in the direction of normal vector.  

 

Fig. 3: Segments of an MR image: white cerebral cortex 

As can be seen from Fig. 3, contours can be used to segment in the image objects of greater 
complexity by means of level set. 

3. CONCLUSION 

The methods described offer a less known approach to the region of image processing 
when compared with currently used methods of filtering (filtering in the spectral region or 
filtering the wavelet transform coefficients) and segmentation (thresholding, following the 
boundaries, etc.). The methods are more time-consuming but also much more variable. A 
typical example is the possibility of choosing the smoothing member of the energy method 
or the choice of the non-linear diffusion member controlling the efficiency of noise elimi-
nation on the basis of the gradient in the image. Individual equations can be re-written arbi-
trarily, depending on the properties of the image, noise, and possibly also other sources of 
image degradation. Described methods will be used to the NMR image processing in my 
thesis in future. 
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